Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 7: 100648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38115894

RESUMO

Developing meat analogues of superior amino acid (AA) profiles in the food industry is a challenge as plant proteins contain less of some essential AA than animal proteins. Mathematical optimisation models such as linear/non-linear programming models were used to overcome this challenge and create high-moisture meat analogues (HMMA) with AA profiles as close as possible to chicken breast meat. The effect on the physiochemical properties and specific mechanical energy (SME) of the HMMA was investigated. The AA content of HMMA was generally lower than chicken. Strong intermolecular bonds present in the globulin fraction could hinder protein acid hydrolysis of HMMA. Plant proteins also affect the HMMA colour as certain AA forms Maillard reaction products with higher browning intensity. Lastly, different characteristics of plant proteins resulted in different SME values under the same extrusion conditions. While mathematical programming can optimise plant protein combinations, fortification is required to match the AA profile of HMMA to an animal source.

2.
Foods ; 12(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36673436

RESUMO

Plant-based meat analogs are food products that mimic the appearance, texture, and taste of real meat. The development process requires laborious experimental iterations and expert knowledge to meet consumer expectations. To address these problems, we propose a machine learning (ML)-based framework to predict the textural properties of meat analogs. We introduce the proximate compositions of the raw materials, namely protein, fat, carbohydrate, fibre, ash, and moisture, in percentages and the "targeted moisture contents" of the meat analogs as input features of the ML models, such as Ridge, XGBoost, and MLP, adopting a build-in feature selection mechanism for predicting "Hardness" and "Chewiness". We achieved a mean absolute percentage error (MAPE) of 22.9%, root mean square error (RMSE) of 10.101 for Hardness, MAPE of 14.5%, and RMSE of 6.035 for Chewiness. In addition, carbohydrates, fat and targeted moisture content are found to be the most important factors in determining textural properties. We also investigate multicollinearity among the features, linearity of the designed model, and inconsistent food compositions for validation of the experimental design. Our results have shown that ML is an effective aid in formulating plant-based meat analogs, laying out the groundwork to expediently optimize product development cycles to reduce costs.

3.
Nature ; 583(7817): 537-541, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699401

RESUMO

The electron-hole plasma in charge-neutral graphene is predicted to realize a quantum critical system in which electrical transport features a universal hydrodynamic description, even at room temperature1,2. This quantum critical 'Dirac fluid' is expected to have a shear viscosity close to a minimum bound3,4, with an interparticle scattering rate saturating1 at the Planckian time, the shortest possible timescale for particles to relax. Although electrical transport measurements at finite carrier density are consistent with hydrodynamic electron flow in graphene5-8, a clear demonstration of viscous flow at the charge-neutrality point remains elusive. Here we directly image viscous Dirac fluid flow in graphene at room temperature by measuring the associated stray magnetic field. Nanoscale magnetic imaging is performed using quantum spin magnetometers realized with nitrogen vacancy centres in diamond. Scanning single-spin and wide-field magnetometry reveal a parabolic Poiseuille profile for electron flow in a high-mobility graphene channel near the charge-neutrality point, establishing the viscous transport of the Dirac fluid. This measurement is in contrast to the conventional uniform flow profile imaged in a metallic conductor and also in a low-mobility graphene channel. Via combined imaging and transport measurements, we obtain viscosity and scattering rates, and observe that these quantities are comparable to the universal values expected at quantum criticality. This finding establishes a nearly ideal electron fluid in charge-neutral, high-mobility graphene at room temperature4. Our results will enable the study of hydrodynamic transport in quantum critical fluids relevant to strongly correlated electrons in high-temperature superconductors9. This work also highlights the capability of quantum spin magnetometers to probe correlated electronic phenomena at the nanoscale.

4.
Nano Lett ; 17(11): 7080-7085, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28967761

RESUMO

Domain walls separating regions of AB and BA interlayer stacking in bilayer graphene have attracted attention as novel examples of structural solitons, topological electronic boundaries, and nanoscale plasmonic scatterers. We show that strong coupling of domain walls to surface plasmons observed in infrared nanoimaging experiments is due to topological chiral modes confined to the walls. The optical transitions among these chiral modes and the band continua enhance the local conductivity, which leads to plasmon reflection by the domain walls. The imaging reveals two kinds of plasmonic standing-wave interference patterns, which we attribute to shear and tensile domain walls. We compute the electronic structure of both wall varieties and show that the tensile wall contains additional confined bands which produce a structure-specific contrast of the local conductivity, in agreement with the experiment. The coupling between the confined modes and the surface plasmon scattering unveiled in this work is expected to be common to other topological electronic boundaries found in van der Waals materials. This coupling provides a qualitatively new pathway toward controlling plasmons in nanostructures.

5.
Science ; 351(6277): 1058-61, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26912362

RESUMO

Interactions between particles in quantum many-body systems can lead to collective behavior described by hydrodynamics. One such system is the electron-hole plasma in graphene near the charge-neutrality point, which can form a strongly coupled Dirac fluid. This charge-neutral plasma of quasi-relativistic fermions is expected to exhibit a substantial enhancement of the thermal conductivity, thanks to decoupling of charge and heat currents within hydrodynamics. Employing high-sensitivity Johnson noise thermometry, we report an order of magnitude increase in the thermal conductivity and the breakdown of the Wiedemann-Franz law in the thermally populated charge-neutral plasma in graphene. This result is a signature of the Dirac fluid and constitutes direct evidence of collective motion in a quantum electronic fluid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...